Para los líderes hospitalarios
encargados de gestionar los aumentos inesperados de la demanda de los
pacientes, la capacidad de anticipar y adaptarse a las circunstancias que
cambian rápidamente se ha vuelto más esencial que nunca. ¿Qué pasaría si
pudiéramos predecir los posibles cuellos de botella en el flujo de pacientes en
tiempo real y prevenirlos antes de que ocurran?
Si bien la pandemia ha puesto la
capacidad de cuidados críticos como nunca antes, los hospitales de todo el
mundo se han enfrentado durante mucho tiempo a desafíos con escasez de camas y
personal para satisfacer la demanda de cuidado crítico. Los servicios de urgencias
en muchos países luchan contra el hacinamiento incluso en circunstancias
regulares. Las unidades de cuidados intensivos (UCI) pueden estar operando a su
capacidad o cerca de su capacidad. Con demasiada frecuencia, el resultado es
esperas y retrasos, que causan frustración, ansiedad y resultados
potencialmente dañinos en los pacientes, al tiempo que aumentan la presión para
el personal [1].
Puede ser tentador pensar que la
solución está en agregar más camas o más personal. Pero por lo general, el
problema no es simplemente de recursos. También se trata de gestionar mejor las
camas que se tienen. El verdadero desafío suele ser el flujo de pacientes:
anticipar y saber cuándo hacer la transición de un paciente de un entorno de
cuidado al siguiente.
Es un desafío de orquestación
altamente complejo y dinámico, con muchas partes móviles. ¿Qué paciente que
espera en la sala de servicios de urgencias debe recibir la próxima cama de
UCI? ¿Qué paciente en la UCI se puede mover con seguridad a una unidad de transición
para liberar una cama? ¿Y quién está listo para ser dado de alta para el
monitoreo en el hogar?
La gestión del flujo de pacientes
requiere una visión integral en diferentes partes del hospital o de la red del
hospital. Sin embargo, eso es a menudo precisamente lo que falta hoy. Con los
datos clínicos y operativos dispersos en sistemas dispares, los equipos de
cuidados carecen de un conocimiento de la situación más amplio más allá de su
unidad o departamento. Esta falta de información fácilmente disponible y
procesable puede obstaculizar la priorización de los pacientes, ralentizar las
transiciones de los pacientes y provocar cuellos de botella imprevistos en el
flujo de pacientes.
La crisis del COVID-19 ha puesto de
manifiesto y exacerbado muchos de estos desafíos. Pero también ha dado lugar a
formas inteligentes de abordarlos. Los proveedores de cuidado médico han
adoptado modelos de colaboración de cuidado centralizado, compartiendo datos en
tiempo real para visualizar la capacidad sin aprovechar y facilitar las
transferencias de pacientes. No solo confían en esos datos para obtener una
descripción general de lo que sucede en cada momento. También lo están
utilizando para pronosticar y prepararse para la demanda futura. Por ejemplo,
los hospitales han utilizado con éxito modelos predictivos para estimar el
número de camas, equipos y personal necesarios para los pacientes con COVID-19
en la UCI y otras salas del hospital [2,3].
A medida que empezamos a pensar más
allá de la pandemia, existe una oportunidad única de integrar estas prácticas
basadas en datos en la gestión diaria del flujo de pacientes, desde la admisión
al hospital hasta el alta hospitalaria y, en última instancia, la
monitorización en el hogar. Mediante el poder de la inteligencia artificial y
el modelado predictivo, podemos extraer patrones e información relevante sobre
el flujo de pacientes y las necesidades de cuidado del paciente a partir de
grandes cantidades de datos hospitalarios históricos y en tiempo real. Después
de la validación inicial, los algoritmos resultantes se pueden actualizar de
forma regular para tener en cuenta las tendencias y circunstancias recientes,
optimizando así aún más el valor predictivo. Esto permite que los líderes del
hospital y los coordinadores de flujo de pacientes orquesten los cuidados de
manera más eficaz en todos los entornos y se adapten rápidamente a las
circunstancias cambiantes.
Así es como puede lucir para la
experiencia de un paciente.
Anticipar los próximos pasos a lo
largo de la experiencia del paciente
Imagínese a Rosa, una paciente de 66
años, que trasladan de urgencia al hospital con palpitaciones cardíacas y
dificultad para respirar. Mientras va en la ambulancia, se envía una
notificación a Jennifer: una coordinadora de flujo de pacientes en un centro de
comando central que supervisa la capacidad de pacientes actual y prevista en
una red de ocho hospitales.
Debido a que Jennifer puede ver
instantáneamente qué hospitales tienen camas disponibles, puede dirigir a Rosa
a un hospital donde recibirá rápidamente el cuidado que necesita. Si las
tendencias de capacidad indican que ciertos hospitales están a punto de ser
saturados con pacientes en las próximas 24 horas, por ejemplo, debido a una
emergencia pública, Jennifer puede comenzar a facilitar la transferencia de
pacientes a hospitales con censos más bajos, equilibrando así la carga de
pacientes en la red. O puede trabajar con supervisores locales en toda la red
del hospital para activar planes de emergencia, abrir camas adicionales y
planificar personal adicional. Todo para prevenir el hacinamiento en los
servicios de urgencias y, además los retrasos en el diagnóstico y el
tratamiento.
Tan pronto como Rosa sea evaluada en
el servicio de urgencias, Jennifer podrá ayudar a los equipos de cuidado para
priorizar una evaluación clínica adicional basada, entre otros, en un algoritmo
de aprendizaje automático que combina los signos vitales del paciente y los
datos fisiológicos para predecir el riesgo de deterioro de la salud. Jennifer
también tiene la descripción general más reciente de la disponibilidad de camas
en todo el hospital, lo que le permite preasignar una cama para Rosa en la
unidad de cuidado adecuada, en estrecha alineación con el equipo en el piso.
Además, Jennifer puede ver cuántos ventiladores necesitará cada unidad de
cuidados intensivos durante las próximas 48 horas.
Una vez que Rosa haya recibido
cuidados intensivos en la UCI para ayudar a estabilizar su condición, Jennifer
ya puede comenzar a planificar con anticipación para facilitar la experiencia
de cuidado de Rosa. Los algoritmos inteligentes ayudan a Jennifer a estimar
cuándo estará Rosa lista para ser transferida a un entorno de cuidado de menor
agudeza en el hospital para el monitoreo por telemetría. Según una lista de
revisión de transición que se actualiza dinámicamente, Jennifer puede ayudar a
los médicos a priorizar la evaluación clínica de los pacientes que pueden estar
listos para la transferencia. Al mismo tiempo, tiene una visión general
actualizada de la supervisión por telemetría disponible. También puede ver
cuántos pacientes en el servicio de urgencias están esperando una cama para
pacientes hospitalizados. Esto ayuda a Jennifer en la identificación de los
posibles cuellos de botella en forma temprana y gestionar el flujo de pacientes
en consecuencia.
Una vez ingresada en una unidad de
transición donde se la coloca en monitoreo por telemetría, Rosa permanece bajo
la atenta mirada del personal clínico, con algoritmos predictivos que
nuevamente le ayudan a Jennifer a orquestar los próximos pasos de manera
proactiva. A partir de un análisis de las desviaciones fisiológicas y las
tendencias de alarma durante las últimas 12 horas, Jennifer puede evaluar
cuándo la condición de Rosa es lo suficientemente estable como para que se
considere su traslado a la unidad médico-quirúrgica.
Ahora llegamos al final de la
experiencia de cuidado hospitalario de Rosa. Mientras la monitorean en la
unidad médico-quirúrgica, su última parada en el camino hacia el alta
hospitalaria, el puntaje de preparación para el alta y el riesgo de readmisión
de Rosa indican que se encuentra fisiológicamente estable y bien encaminada
hacia la recuperación. Una vez que el médico responsable ha revisado su estado,
Rosa recibe el mensaje tranquilizador que estaba esperando. Ella está lista
para irse a casa.
Mejorar el flujo de pacientes y
reducir la duración de la estancia
Con miles de pacientes como Rosa
fluyendo a través de la red de un hospital en un día determinado, es fácil ver
los beneficios de tener información clínica y operativa centralizada para
administrar el flujo de pacientes.
En lugar de optimizar en silos, los
proveedores de cuidado médico pueden comenzar a orquestar el cuidado en toda su
empresa. Agregue a eso el poder del análisis predictivo y será posible
administrar el flujo de pacientes de manera proactiva de un entorno de cuidado
a otro. Al acelerar la progresión del paciente a lo largo de su experiencia de
cuidado, los proveedores de cuidado médico pueden evitar la congestión en
ciertas áreas del hospital y la sobreutilización de recursos críticos en otras.
Para una paciente como Rosa, eso
significa que no tiene que permanecer en el hospital más de lo necesario. Esto,
a su vez, brinda a otros pacientes una mejor oportunidad de tener acceso al
cuidado crítico que necesitan. Como resultado, las empresas de cuidado médico
pueden atender a más pacientes, lo que reduce los retrasos a raíz de la
pandemia. Además, un mejor flujo de pacientes también puede beneficiar sus
resultados. Por ejemplo, un hospital de EE. UU. estimó que podrían ahorrar $
3,9 millones al año eliminando el hacinamiento en los servicios de urgencias
mediante transferencias aceleradas a entornos de hospitalización [4].
Permitir la toma de decisiones en red
en todo el hospital
Para que funcione dicha gestión
empresarial del flujo de pacientes, se necesita más que un centro de comando
central que supervise y orqueste la capacidad y las transiciones de los
pacientes. Junto con todos los equipos de cuidado involucrados, el liderazgo
senior deberá acordar los KPI relevantes para toda la empresa que reflejen el
flujo de pacientes anticipado y en tiempo real entre los departamentos. En
combinación, esos KPI deben brindar a todos un pronóstico confiable de los
cuellos de botella inminentes, así como también información sobre las
intervenciones adecuadas.
La información que ayuda a
administrar el flujo de pacientes también deberá estar disponible en el punto
de cuidado, en una forma fácil de usar y procesable que sea visible para todos
los miembros del equipo, ya sea a través de paneles de control o alertas
oportunas. Los conocimientos predictivos deberían ayudar a los médicos a tomar
decisiones e integrarse de forma natural en sus flujos de trabajo, sin aumentar
la sobrecarga de información.
La adaptación continua es clave aquí.
A diferencia de otras industrias, como la fabricación, donde los procesos
siguen una secuencia fija y predeterminada, el cuidado médico es un esfuerzo
humano en el que ocurren eventos inesperados. Por ejemplo, una paciente como
Rosa puede no responder a su plan de tratamiento como se anticipó y se debe
readmitir en la UCI para cuidados intensos adicionales. Los algoritmos predictivos
pueden ayudar a detectar los primeros signos de deterioro, pero el juicio clínico en el momento sigue
siendo esencial para evaluar la condición de un paciente y decidir qué hacer a
continuación.
Es por eso que los centros de comando
central en el cuidado de la salud no se tratan de una gestión de arriba hacia
abajo. Más bien, deben apoyar la colaboración entre médicos y administradores
del cuidado en todo el hospital o la red hospitalaria. El futuro de la atención
se centrará en conocimientos predictivos que informen la toma de
decisiones en red, con los médicos y el personal a cargo de las decisiones
clínicas, respaldados por un centro que supervisa el panorama operativo más
amplio para administrar de manera proactiva el flujo de pacientes.
Extender la coordinación del cuidado
desde el hospital hasta el hogar
En el futuro, la coordinación
centralizada del cuidado podría extenderse aún más al hogar, mediante diagnósticos y monitoreo remotos para
vigilar a Rosa a medida que reanuda su vida diaria. Como mi colega Roy Jakobs
ha señalado anteriormente, mejorar las transiciones entre el cuidado agudo y posagudo es
una de las mayores oportunidades del cuidado de la salud a medida que se
distribuye cada vez más. Nuevamente, aquí es donde el análisis predictivo en el cuidado de la salud podría
marcar la diferencia.
Imagine que la coordinadora de flujo
de pacientes, Jennifer, recibe una señal de advertencia temprana respecto a que
la salud de Rosa está a punto de deteriorarse nuevamente, con base en un
análisis remoto de sus signos vitales y datos biométricos. Esto le permitiría a
Jennifer alertar de manera proactiva a los equipos de cuidado para invitar a
Rosa a una evaluación clínica adicional, lo que previene un evento de
emergencia evitable más adelante. El control de salud continuo en el hogar ya
ha demostrado su valor en el manejo de enfermedades crónicas como la EPOC, con
un estudio piloto en los EE. UU., que mostró una reducción del 80 % en las
readmisiones por EPOC aguda de 30 días y $ 1,3 millones en ahorros [5].
En última instancia, así es como los
sistemas de atención médica del futuro gestionarán el flujo de pacientes de
manera más eficaz y eficiente a lo largo de la experiencia del paciente, con
fundamento en decisiones basadas en datos para garantizar que el paciente
adecuado reciba la atención adecuada en el lugar correcto y en el momento
adecuado. Ya sea en un hospital, en el hogar o en un entorno comunitario. Con
base en una comprensión más profunda de los patrones en la demanda y el flujo
de pacientes, los líderes del cuidado de la salud también pueden comenzar a
crear estrategias a largo plazo para la planificación de la capacidad
hospitalaria, al tomar decisiones mejor informadas sobre los tipos de entornos
de cuidado y recursos que se necesitan.
La incertidumbre seguirá siendo tan
inherente al cuidado de la salud como a la vida. Pero al pronosticar mejor lo
que puede suceder a continuación, los sistemas de salud se volverán más
adaptables y resistentes frente al cambio y la crisis. Esa es una predicción
que estoy dispuesto a hacer.
Referencias
[1] Rutherford PA, Anderson A,
Kotagal UR, Luther K, Provost LP, Ryckman FC, Taylor J. Achieving Hospital-wide
Patient Flow (Second Edition). IHI White Paper. Boston, Massachusetts:
Institute for Healthcare Improvement; 2020. http://www.ihi.org/resources/Pages/IHIWhitePapers/Achieving-Hospital-wide-Patient-Flow.aspx
[2] Mayo Clinic COVID-19 Predictive
Analytics Task Force, Pollock BD, Carter RE, et al. Deployment of an
Interdisciplinary Predictive Analytics Task Force to Inform Hospital
Operational Decision-Making During the COVID-19 Pandemic. Mayo Clin Proc.
2021;96(3):690-698. https://www.mayoclinicproceedings.org/article/S0025-6196(20)31482-8/fulltext
[3] Weissman GE, Crane-Droesch A,
Chivers C, et al. Locally Informed Simulation to Predict Hospital Capacity
Needs During the COVID-19 Pandemic. Annals of Internal Medicine. Volume 173,
Issue 1: 21-28. https://www.ncbi.nlm.nih.gov/pubmed/32259197
[4] Foley M, Kifaieh N, Mallon W.
Financial Impact of Emergency Department Crowding. Western Journal of Emergency
Medicine, Volume XII, no. 2: May 2011, 192-197. https://pubmed.ncbi.nlm.nih.gov/30193738/
[5] Reducing hospital readmissions
with integrated COPD care. Philips case study. [Results are specific to the
institution where they were obtained and may not reflect the results achievable
at other institutions.] https://www.philips.com/a-w/about/news/archive/case-studies/20191001-reducing-hospital-readmissions-with-integrated-copd-care.html
Fuente:
Philips.com.ar